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The mineral kettnerite, CaBi(OFCO3), is a rare example of an order–disorder

(OD) structure with a quadratic net. The lattice parameters of the simplest

possible 1O polytype are a = 5.3641 (1), b = 5.3641 (1), c = 13.5771 (2) Å, and the

space group is Pbaa. There are three kinds of OD layers, identical to structure-

building layers. Two of them are non-polar: the Bi—O and Ca—F at z = 0 and z =

1/2, respectively, with the layer-group symmetry C2/m2/m(4/a,b)21/m21/m. The

third kind of OD layer of CO3 groups (located between the Bi—O and Ca—F

layers) is polar, with alternating sense of polarity. The layer group is Pba(4)mm.

Triangular CO3 groups are parallel to (110) or (1�110) planes with one O atom

oriented towards the Bi—O layer and the remaining two O atoms oriented

towards the Ca—F layer. The orientations of CO3 groups alternate along the

[110] and [1�110] directions. As a result, each group parallel to (110) is surrounded

by four nearest neighbors parallel to (1�110) and vice versa. These positions can be

interchanged by an (a + b)/2 shift or by �/2 rotation; thus stacking of the layer

onto adjacent ones is ambiguous. Instead of OD layers, the polytypes are

generated by stacking of OD packets, comprising the whole CO3 layers and

adjacent halves of the Bi—O and Ca—F layers. They are polar, with alternating

sense of polarity; the layer group is Pba(4)mm. Stacking sequences are

expressed by ball-and-stick models, with the aid of symbolic figures, and by

sequences of orientational characters. There are two maximum-degree-of-order

(MDO) polytypes, 1O (really found and described, see lattice parameters and

space group above) and 2O, with doubled c parameter and space group Ibca

(not yet found). The derivation of the MDO generating operations of both

polytypes is presented in this paper. The stacking rule also allows another, non-

MDO, polytype with doubled c, i.e. the 2Q polytype, space group P42bc

(tetragonal, not yet found). Various kinds of domains can exist: (i) out-of-step

domains shifted by (a + b)/2, (ii) twin domains rotated by �/2 around local

tetrads of odd or even packets, and (iii) upside-down domains in the polar 2Q

polytype. Stacking sequences of 16 possible domains of the polytypes mentioned

above are listed. Also 60 domains of four distinct six-packet polytypes are

theoretically possible.

1. Introduction

The mineral kettnerite CaBi[OFCO3] has been found in

Krupka, Krušné hory (Ore Mountains), NW Bohemia, and

described by Žák & Syneček (1956, 1957). The first structure

determination by Syneček & Žák (1960) provided positions

of all atoms except those belonging to CO3 groups. The

arrangement of these groups remained undetermined for a

long time, and it was also unclear whether the structure should

be described in the smaller tetragonal cell (a ’ 3.8 Å, c ’

13.6 Å) or in a larger supercell. Recently, Hybler & Dušek

(2007) have revealed the existence of weak and diffusely

streaked superlattice (in fact polytype) diffraction spots

justifying the description of the structure in the supercell a =

5.3641 (1), b = 5.3641 (1), c = 13.5771 (2) Å. Although the unit

cell is metrically tetragonal, the structure was refined in the

orthorhombic space group Pbaa.

The structure (Fig. 1) is built up of three kinds of building

layers parallel to (001). The first one contains O1 atoms in a

square array at z = 0 and two adjacent planes of Bi atoms

facing the centers of the squares (Bi—O layers). This kind of

layer has also been found in the minerals bismutite Bi2O2CO3

and beyerite CaBi2O2(CO3)2 (Lagercrantz & Sillén, 1948) as

well as in Aurivillius phases (Aurivillius, 1949a,b, 1950). A

similar layer of F1 atoms is located at z = 1/2 with two adjacent

planes of Ca atoms (Ca—F layers). Both these layers are



pseudotetragonal with the periodicity

corresponding to the a and b vectors of

the smaller cell. The layers of CO3

groups are located between Bi—O and

Ca—F layers. The triangular CO3

groups are oriented close to the (110) or

(1�110) planes, with (apical) O2 atoms

pointing towards the Bi—O layer, while

the remaining pairs of (basal) O3 atoms

are oriented towards the Ca—F layer.

The orientations of CO3 groups alter-

nate in two directions, along [110] and

[1�110], so that each group close to (110)

is surrounded by four nearest neighbors

close to (1�110) and vice versa [cf. Fig. 2

(top)]. This structure model provides

reasonable distances of equally charged

O3 atoms, but it requires description of

the structure in the larger supercell. The

orientation of every CO3 group (and

consequently of all their neighbors, and

neighbors of neighbors etc.) can be

mutually interchanged. This inter-

change can also be interpreted as a shift

of the whole CO3 layer along the (a +

b)/2 vector (of the larger supercell) or

�/2 rotation of the layer. This ambiguity

in the stacking of the CO3 layer causes

the order–disorder (OD) character of

kettnerite.

The structure determination based on

the subset of reflections corresponding

to the smaller cell (h + k = 2n in the

large supercell indexing) produces a

tetragonal family structure, in which

both possible positions of the triangular

CO3 group interpenetrate, forming a

peculiar square pyramid. In this

pyramid the O2 atom is on the apex

while four half-occupied O3 atoms form

the base. Since all heavy (and some

light) atoms are in special positions

obeying the symmetry of the family

structure, they do not contribute to

polytype reflections. The latter

reflections are produced by O3 atoms

and also by small contributions

from O1 and F1 atoms, misplaced

from ideal positions owing to

desymmetrization (Ďurovič, 1979). As

a consequence, the polytype reflections

are very weak, and they are

further weakened or even disappear

owing to various degrees of

disorder. This fact considerably

obstructed the correct structure deter-

mination.
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Figure 2
Top: structure-building layers of kettnerite, projection down c. The smaller and larger cells are
indicated. Displacements of atoms owing to desymmetrization are indicated by arrows. Bottom:
corresponding OD layers, idealized model. Unit cells are chosen with respect to the layer groups
indicated below.

Figure 1
Crystal structure of kettnerite (idealized): a slice parallel to the (1�110) plane of the larger cell. OD
layers and packets are indicated.



The structure has been described in detail in a previous

paper (Hybler & Dušek, 2007). However, its OD character

was only briefly mentioned. Since kettnerite represents a kind

of an OD structure with a quadratic net, not observed as yet, it

is worth describing it in detail. The aim of this paper is to

present a thorough description, as well as the derivation, of

maximum-degree-of-order (MDO) and of some non-MDO

polytypes allowed by the stacking rule.

2. Terms and conventions

It seems proper to recall some important properties of OD

structures. They consist of OD layers, three-dimensional

objects with two-dimensional periodicity, not necessarily

identical to crystal chemical building layers. The OD layers are

related by partial coincidence operations, denoted as POs in

the following. The POs converting a layer into itself are called

�-POs; those converting an OD layer into an adjacent one are

called �-POs. The ensemble of �-POs of the given layer

constitutes one of 80 possible layer groups (Dornberger-Schiff,

1956). POs not changing the orientation of the layer are

denoted as �-POs; those turning the layer upside down are

called �-POs. Both �- and �-POs can be, depending on the

category of the OD structure, either � or �. Of 80 layer groups,

17 are polar, containing the �-POs only, the remaining 63 are

non-polar, containing both �- and �-POs. The layer groups are

described by Hermann–Mauguin symbols, where the direction

of lacking periodicity is indicated in parentheses. For quad-

ratic nets, like in the case of kettnerite, the full five-entry

symbols of layer groups related to all important directions a, b,

c, a + b and a � b (in the given order) are often used, like, for

example, P b a (4) m m (Dornberger-Schiff, 1956, 1964, 1966).

The main property of OD layers is their stacking ambiguity,

which means that there is always more than one possibility as

to how the consecutive layers can be stacked.

3. Idealized model of the structure of kettnerite

In order to simplify the description of the structure and

derivation of polytypes, the idealized structure model

neglecting the desymmetrization is used throughout this study.

This model assumes ‘perfectly diagonal’ orientation of CO3

groups parallel to (110) or (1�110) planes, and F1 and O1 atoms

in special positions at �44, not displaced as in the real structure

(Hybler & Dušek, 2007). The deviations from the ideal model

can be mentioned and discussed when necessary.

In this study, all translational components of POs will be

related to the vectors a, b, of the larger cell, and the repeat unit

c0, identical to the c vector of the family structure.

3.1. OD layers

The structure belongs to the category IV OD structures

composed of more than one kind of layer (Dornberger-Schiff

& Grell, 1982; Ďurovič, 1997, 1999). In our case we can

distinguish three kinds of layers; two of them are non-polar,

and the remaining one is polar, appearing in the structure with

alternating sense of polarity (Fig. 2).

OD layers are defined as follows (cf. Hybler & Dušek,

2007):

(i) A1
4n OD layer (denoted Bi—O layer in the following),

comprising the plane of O1 atoms at z = 0, and two adjacent

planes of Bi1 atoms at z = �0.094, symmetry C(4/a)mm

(shortened symbol) or C 2/m 2/m (4/a,b) 21/m 21/m (full five-

entry symbol). The multiplicity of the layer group is 32 (16� +

16� POs). The origin of the layer is set at �442m. The layer is

non-polar. The layer-group symbols are related to the vectors

of the larger supercell, while the layer itself is periodic with

respect to the smaller subcell. As a consequence, the unusual

symbol with a C-centering appears. The layer-group symbols

related to vectors of the smaller cell read: P 21/m 21/m (4/n)

2/m 2/m (full five-entry symbol) and P(4/n)mm (shortened

symbol). There is one �–� plane corresponding to the plane of

O1 atoms.

(ii) b2
4n+1 and d 2

4n�1 OD layers (denoted as CO3 layers in

the following), comprising C1 atoms at z = 0.256, O2 atoms at

z = 0.161 and pairs of O3 atoms at z = 0.299. The shortened

and full (five-entry) layer-group symbols are P(4)bm and

Pba(4)mm, respectively. The origin of the layer is at (4). The

layers are polar, with regularly alternating sense of polarity.

The polarity of b4n+1 is opposite to that of d4n�1. The general

multiplicity of the group is 8 (� operations only). The trans-

lation group of b2
4n+1 and d 2

4n�1 is a subgroup of translation

group of A1
4n and A3

4n�2 and the layer is periodic with respect

to a and b vectors of the larger supercell.

(iii) A3
4n�2 OD layer (denoted as Ca—F layer in the

following), comprising the plane of F1 atoms at z = 1/2 and two

adjacent planes of Ca1 atoms at z = 1/2 � 0.1. The layer

symmetry is the same as that of the A1
4n (Bi—O layer),

C(4/a)mm (shortened symbol) or C 2/m 2/m (4/a,b) 21/m 21/m

(full five-entry symbol). The origin is set at �442m. The layer is

non-polar. The C-centering is used for the same reason as in

the case of the Bi—O layer. There is one �–� plane corre-

sponding to the plane of F1 atoms.

There is one Bi—O, one Ca—F and two CO3 (of opposite

polarities) OD layers per repeat unit c0 . It should be

emphasized that the choice of OD layers in OD structures of

category IV of more than one kind of layer is not unique and

interlayer boundaries can be set in more than one way. For

instance, the half or the whole O2 atom or even the C1 atom

can be appended to the Bi—O layer instead of to the CO3

layer. The described choice of OD layers is thus one of several

possible ones. It is used in this study because of its closeness to

crystal chemical building layers. The projections of OD layers

down c in the idealized model are shown in Fig. 2 (bottom).

The choice of OD layers is also indicated on the right-hand

side of Fig. 1. There are two kinds of layer pairs: (Bi—O; CO3),

(CO3; Ca—F).

For the given category of OD structures the symbol of the

OD groupoid family consists of two lines. In the first line there

are symbols of layer groups of the consecutive layers; their

sequence starts and ends with the symbols of non-polar layers.

In the second line there are, in square brackets, components of
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shifts of origins of the layer (as defined above) with respect to

the origin of the preceding layer (Grell & Dornberger-Schiff,

1982; Ďurovič, 1997).

The symbol of the OD groupoid family of kettnerite thus

reads

C2=m2=mð4=a;bÞ21=m21=m Pbað4Þmm C2=m2=mð4=a;bÞ21=m21=m

þ 1
4 ;þ

1
4

� �
� 1

4 ;�
1
4

� �
or, in the shortened form,

Cð4=aÞmm Pð4Þbm Cð4=aÞmm

þ 1
4 ;þ

1
4

� �
� 1

4 ;�
1
4

� �
The general multiplicity of the � subgroup of the layer group

C 2/m 2/m (4/a,b) 21/m 21/m of the A1
4n (Bi—O) layer is N =

16; the multiplicity of the layer group Pba(4)mm of b2
4n+1 or

d 2
4n�1 (CO3) layers is 8. The general multiplicity of the �

subgroup of operations valid for the layer pair (A1
4n; b2

4n+1) is

F = 8. The NFZ relation (Dornberger-Schiff, 1964) reads Z =

N/F = 16/8 = 2. There are thus two possibilities as to how the

b2
4n+1 (CO3) layer can be stacked onto the A1

4n (Bi—O) layer.

Analogously, the same relation is valid for the (A1
4n; d 2

4n-1)

layer pair (Bi—O layer + CO3 layer attached at the opposite

side), as well as for both possible pairs of Ca—F and CO3

layers (A3
4n�2; b2

4n+1) and (A3
4n�2; d 2

4n�1). The NFZ relations

are summarized in Table 1.

3.2. OD packets, symbolic figures

For OD structures of more kinds of layers the derivation of

MDO (but also other periodic) polytypes is a complicated task

because of the different geometry of OD layers. It has proven

useful to use structural units larger than individual OD layers,

the so-called OD packets (Ďurovič, 1974). According to the

definition, an OD packet is the smallest continuous part of the

OD structure which is periodical in two dimensions and which

represents completely its composition. In kettnerite, the OD

packet comprises the CO3 layer + adjacent halves of the Bi—

O and Ca—F layers. The packet boundaries are identical to

the �–� planes (cf. Fig. 1) and the O1 and F1 atoms are halved

by them. Although the packet contains halves of Bi—O and

Ca—F layers (the structure parts of higher symmetry), the

symmetry of the whole packets is determined by the symmetry

of the CO3 layer, Pba(4)mm. The polarity and stacking

ambiguity of the CO3 layer determines the polarity and

stacking ambiguity of the whole packet. Even- and odd-

numbered packets are geometrically equivalent. They differ in

the sense of polarity and alternate regularly in the structure.

There are two packets (of opposite polarities) per repeat

unit c0.

Similarly to CO3 layers, every packet can appear in two

possible positions shifted from each other by (a + b)/2. Using

the packets instead of layers, kettnerite can be formally

handled as an OD structure of one kind of layer of the cate-

gory III (Ďurovič, 1997, 1999).

The symbol of the OD groupoid family for kettnerite then

reads

P b a ð4Þ m m � operations within the packet;

f20 21

�
4

n1;0

�
2�1=2 21=2g � operations : even! odd packet;

f20 21

�
4

n1;0

�
21=2 2�1=2g � operations : odd! even packet:

There are the following �-POs: 1, [. . (41) . .], [. . (42) . .],

[. . (43) . .] (congruent, rotations around the fourfold axis),

[. a ( . ) . .], [. . ( . ) . m], [b . ( . ) . .] and [. . ( . ) m .]

(enantiomorphous, mirror and glide reflections in planes

perpendicular to the packet boundary plane). The �-POs

(even-to-odd packet) are as follows: [. 21 ( . ) . .]+, [2 . ( . ) . .]+

(congruent, with reverse continuation), [. . ( . ) 2�1/2 .]�,

[. . ( . ) . 21/2]� (congruent, without reverse continuation), [�11]+,

[. . (a) . .]+ (enantiomorphous, with reverse continuation) and

[. . (�441) . .]�, [. . (�443) . .]� (enantiomorphous, without reverse

continuation). In the following, the + or � sign in the super-

script indicates the �-POs with and without reverse conti-

nuation, respectively.

It has proven useful to display OD layers or packets in the

form of arrays of appropriately chosen symbolic figures rather

than in the form of ball-and-stick models. Such figures

preserve the symmetry of layers or packets (responsible for

their stacking), ignore unnecessary structure details, and thus

allow handling of the structure with a high degree of

abstraction. Since the symmetry of the kettnerite packet is

determined by the symmetry of the CO3 layer (see above),

only this symmetry needs to be reflected by the symbolic

figures. All atoms belonging to Bi—O and Ca—F layers can

thus be ignored. This approach greatly facilitates further

considerations.

The symbolic figures chosen for kettnerite packets corre-

spond to the structure motifs shown in Fig. 3, in projection
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Table 1
NFZ relation for OD layers of the kettnerite family.

OD layer Layer group N F Z

A1
0 Bi—O C 2/m 2/m (4/a,b) 21/m 21/m

b2
1 CO3 Pba(4)mm

A3
2 Ca—F C 2/m 2/m (4/a,b) 21/m 21/m

d 2
3 CO3 Pba(4)mm

A1
4 Bi—O C 2/m 2/m (4/a,b) 21/m 21/m

b2
5 CO3 Pba(4)mm



down c. They have fourfold symmetry and centers in tetrads.

With respect to two possible arrangements of CO3 groups

around tetrads the ‘left’ and ‘right’ figures can be distin-

guished. The symbolic figures of even-numbered packets

denoted in the following as P2n (P0 , P2 ,

P4 etc.) are oriented to the observer by

the ‘white’ side, while those repre-

senting the odd-numbered packets (of

opposite polarity) denoted as P2n+1 (P1 ,

P3 , P5 etc.) by the ‘black’ side. In Figs.

4(a) and 4(b) the even and odd packets

are presented, partially in the ball-and-

stick model and partially with the aid of

symbolic figures. The superposition of

one even and one odd packet [the

packet pair (P0 ; P1)] is shown in Fig.

4(c). In the packet, every ‘right’

symbolic figure is surrounded by four

‘left’ ones (of the same color) and vice

versa. In the projection of the packet

pair, the positions of symbolic figures

belonging to even and odd packets are

such that every ‘white’ figure is

surrounded by four ‘black’ ones, two of

them are ‘left’, the other two are ‘right’.

In pictures displaying more than two

packets, the symbolic figures will be

colored as follows: white for P0 , black

for P1 , empty red for P2 and full red for

P3 packets.

The positions of symmetry elements

corresponding to �-POs of a single

packet (P2n) are indicated in Fig. 5(a),

while those corresponding to �-POs of

the packet pair (P2n ; P2n+1) are shown in

Fig. 5(b). One important property of the structure can be

recognized in these (and also in the previous) pictures: the

tetragonal symmetry is obeyed solely for the array of figures of

the same color (i.e. single packet) but not for both colors

simultaneously (i.e. packet pair). Thus the packet pair as a

whole has only twofold symmetry.

As mentioned above, the layer symmetry of a single packet

is determined by the symmetry of the CO3 layer, Pba(4)mm,

with general multiplicity N = 8. The layer group of the packet

pair (P2n ; P2n+1) is Pba(a). The general multiplicity of the �
subgroup of operations is F = 4. The NFZ relation for the

packet pair reads Z = N/F = 8/4 = 2. There are thus two

possibilities as to how the packet P2n+1 can be stacked onto P2n

and vice versa.

3.3. Stacking of packets

The stacking sequence in any polytype can be generally

expressed as

T0 � T1 T2 � T3 T4 � T5 . . . Ti � Tiþ1

v01 v12 v23 v34 v45 viiþ1

ð1Þ

where Ti are orientational characters which in the present case

are as follows: R and L for right and left symbolic figure,

respectively, placed in the defined position. The vii+1 symbols

are displacement characters, corresponding to displacement
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Figure 3
Arrangement of the CO3 groups around local tetrads in the even and odd
packets in projections down c, alongside the assigned symbolic figures.

Figure 4
Even packet (a), odd packet (b) and superposition of both (c) in projections down c, in the ball-and-
stick model (left) and using symbolic figures (right).

Figure 5
Set of �-POs of one packet (a) and of 0,1[�] POs transforming the even packet into the odd one (b).



vectors. The dot (�) above a displacement character (not

necessary in some categories of OD structures) indicates the

even-to-odd packet boundary, corresponding to the F atoms

plane in the real structure. Because of the arrangement of

white and black symbolic figures, there are four (shortest)

possible displacement vectors, +a/2, �a/2, +b/2 and �b/2.

These symbols of vectors may be used as displacement char-

acters vii+1 .

However, if the displacement vectors are chosen arbitrarily,

the above principle allows description of the same sequence of

packets in many alternative but equivalent ways. Therefore, it

seems proper to adopt some additional rules for selection of

displacement vectors. Thus the following possible values of

vii+1 are selected: +a/2 for i = 2n and �a/2 for i = 2n + 1. It is

also recommended to start the initial sequence of packets (not

a result of some transformation) with the right white ‘refer-

ence’ symbolic figure belonging to the P0 packet (cf. Fig. 5b, in

the center of the first row from the top). The stacking

sequence of the packet pair reads

R � L

þa=2 �a=2
ð2Þ

A longer sequence can be expressed as

R � L R � L R � L

þa=2 �a=2 þa=2 �a=2 þa=2 �a=2
ð3Þ

The regular alternation of +a/2 and �a/2 displacement vectors

results in the zig-zag arrangement of figures. Therefore, all

‘reference’ figures of P2n and of P2n+1 packets are always

superimposed with the ‘reference’ figures of P0 and P1 ,

respectively. The orientational character for the reference

figure (R or L) determines unambiguously one of two possible

positions of each packet.

The expression of the stacking sequence can be further

simplified. Since the sequence of displacement vectors is

always +a/2 �a/2 +a/2 �a/2 +a/2 . . . etc., it is unnecessary to

repeat it again and again. Moreover, every kind of displace-

ment vector belongs to the given kind of packet boundary: the

dot (�) and the empty space ( ) always indicate +a/2 and �a/2

shifts, respectively. Keeping this fact in mind, the displacement

characters can be omitted, and the whole sequence can be

expressed by a one-line symbol, such as

R � L R � L R � L: ð4Þ

These simplified expressions of

sequences of packets will be used in the

following.

3.4. MDO polytypes

Any family of polytypes theoretically

contains an infinite number of periodic

and non-periodic structures. However,

periodic polytypes can be subdivided

into two groups, the ‘privileged’ poly-

types and the remaining ones. These

privileged polytypes are named as basic,

standard, simple or regular. They

represent the simplest possible sequences of layers (or

packets) and usually belong to the most frequently occurring

ones. The OD theory pays special attention to polytypes in

which all layer triples, quadruples etc. are geometrically

equivalent, or, at least, which contain the smallest possible

number of kinds of these units. They are called MDO

(maximum degree of order) polytypes (Dornberger-Schiff,

1964, 1966; Ďurovič, 1997, 1999). For every MDO polytype

there exists (one or more than one) �-PO with translational

component parallel with the stacking direction, with magni-

tude equal to the distance between two �-equivalent layers

(packets). This PO is called a generating operation and the

structure of the given polytype is derived by its repetition. As

the generating operation becomes total, it is also contained in

the space group of the polytype. The possible MDO polytypes

of kettnerite are described in this article.

The procedure for derivation of MDO polytypes was

described, for example, by Weiss & Ďurovič (1980) for Mg-

vermiculite (cf. Dornberger-Schiff & Grell, 1982). In a slightly

modified form it is now applied to kettnerite:

(i) Take a starting OD packet P0 of one kind.

(ii) Form all triples of equivalent packets (P0 ; P1 ; P2) that

are permitted by the stacking rule and for each one take note

of all 0,1[�]+ POs. Similarly, take note of all POs 0,1[�] and

1,2[�]. Keep only those packet triples for which at least one

0,1[�]+ and one 1,2[�]+ PO exists.

(iii) For any of the packet triples selected in (ii), form all

products 0,1[�]+
�1,2[�]+ = 0,2[�], thus obtaining coincidence

operations transforming P0 to P2.

(iv) Take these operations one by one and apply them on

the triple (P0 ; P1 ; P2) adding further packets P4 , P5 , . . . in

proper positions and orientations until a packet translationally

equivalent to P0 is obtained. The coincidence operation

applied then becomes a total symmetry operation of the

polytype in which all packet triples are equivalent and it is

called an MDO-generating operation.

(v) Determine other symmetry operations thus generated,

the space group of the polytype, determine basic vectors and

eventually re-orient the polytype into the conventional

setting.

(vi) Repeat the procedure for the remaining POs noted

in (iii).
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Table 2
MDO1 polytype 1O, unit cell a, b, c0 ; multiplicative table of 0,1[�1]+

� 1,2[�1]+ = 0,2[�] MDO-generating
operations.

Note that z coordinates and z components of screw axes and glide planes are related to the repeat unit c0 .

1,2[�1]

1,2[. 21 ( . ) . .] 1,2[2 . ( . ) . .] 1,2[�11] 1,2[. . (a) . .]

0,1[�1] [x = 1/4, z = 1] [y = 1/4, z = 1] [x = 0, y = 0, z = 1] [z = 1]

0,1 [. 21 ( . ) . .] 0,2[tc0
] 0,2[. . 22 . .] 0,2[. n1,2 . . .] 0,2[n2,1 . . . .]

[x = 1/4, z = 1/2]

0,1[2 . ( . ) . .] 0,2[. . 22 . .] 0,2[tc0
] 0,2[n2,1. . . .] 0,2[. n1,2 . . .]

[y = 1/4, z = 1/2]

0,1[�11] 0,2[. n1,2 . . .] 0,2[n2,1 . . . .] 0,2[tc0
] 0,2[. . 22 . .]

[x = 0 y = 0, z = 1/2]

0,1[. . (a) . .] 0,2[n2,1 . . . .] 0,2[. n1,2 . . .] 0,2[. . 22 . .] 0,2[tc0
]

[z = 1/2]



(vii) Repeat the procedure for all

remaining kinds of OD packets.

(viii) Check the list of MDO poly-

types thus derived, and exclude redun-

dant polytypes.

As mentioned above, there are four

0,1[�]+ POs: 0,1[. 21 ( . ) . .]+, 0,1[2 . ( . ) . .]+

(congruent), 0,1[�11]+, 0,1[. . (a) . .]+

(enantiomorphous). The positions of

the corresponding symmetry elements

in the unit cell are indicated in Table 2,

in square brackets below the symbols,

and they are also apparent from Fig.

5(b). They represent one possible set of

0,1[�]+ POs corresponding to one of two

possible positions of P1 with respect to

P0 . These operations will be referred to as 0,1[�1]+ in the

following.

The first possible triple is such that the packet P2 is exactly

above P0 (sequence R � L R) and so are also the

positions of symmetry elements for 1,2[�1]+ POs: 1,2[. 21 ( . ) . .]+,

1,2[2 . ( . ) . .]+, 1,2[�11]+, 1,2[. . (a) . .]+. Let us form all products

0,1[�1]+
�1,2[�1]+ = 0,2[�]. A graphical derivation of these

products is illustrated in Fig. 6. In these pictures, only one of

four ‘wings’ forming the symbolic figure is displayed. In this

way the changes of orientation of the figure owing to the

actions of consecutive POs can be more easily traced than for

the complete figure. Note also that the wings are always

oriented either as pointing up or down. This is because the

whole symbolic figure cannot be generated solely by �-POs

but must be completed by local tetrads, �-POs, of the packet.

Resulting operations transforming P0 to P2 are listed in

Table 2. There are four 0,2[�] operations altogether: 0,2[tc0
],

0,2[. . 22 . .] (congruent), 0,2[. n2,1 . . .], 0,2[n1,2 . . . .] (enantio-

morphous), and they all became total as MDO-generating

�-operations of the MDO1 polytype. All these operations

contain the translational component c0 and the unit-cell

vectors are a, b, c0 . The total coincidence operations together

with the 0,1[�1]+ operation related to c (1,2[. . (a) . .]+) form the

space group Pbaa (No. 54), Ramsdell’s symbol of the polytype

is 1O. A projection of the polytype down c in the ball-and-

stick model as well as symbolic figures with symmetry opera-

tions indicated is shown in Fig. 7(a). The side view of the

structure is shown in Fig. 8(a). Its stacking symbol reads

|R � L|. This polytype has really been found and corresponds

to the structure described in the previous study (Hybler &

Dušek, 2007).

The second possible triple contains the packet P2 again

above P0 , but in the second alternative orientation (the

sequence R � L L). Therefore we have to take another set as

1,2[�]+ POs: 1,2[21 . ( . ) . .]+, 1,2[. 2 ( . ) . .]+, 1,2[�11]+, 1,2[. . (b) . .]+.

These operations are obtained as products of the POs from the

previous set with certain �-operations of the packet P1 and

they will be referred to as [�2]+ in the following. Positions of

the respective symmetry elements are given in Table 3 in

square brackets below the symbols. Note, that, for example,

the position of 1,2[�11]+ is different from 0,1[�11]+. The resulting
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Figure 6
Graphical representation of the derivation of 0,2[�] MDO-generating
operations in the 1O polytype. The 0,1[. 21 ( . ) . .]+ PO (one of 0,1[�1]+ POs)
is successively multiplied by all 1,2[�1]+ POs. For the sake of simplicity,
only one of four wings of the symbolic figure is displayed. The packet P2 is
represented by the red empty figure in order to distinguish it from P0 .
Similar pictures can be constructed for all three remaining 0,1[�1]+ POs.

Table 3
MDO2 polytype 2O, unit cell a, b, 2c0; multiplicative table of 0,1[�1]+

� 1,2[�2]+ = 0,2[�] MDO-
generating operations.

Note that z coordinates and z components of screw axes and glide planes are related to the repeat unit c0 .

1,2[�2]

1,2[21 . ( . ) . .] 1,2[. 2 ( . ) . .] 1,2[�11] 1,2[. . (b) . .]

0,1[�1] [y = 0, z = 1] [x = 1/2, z = 1] [x = 1/4, y = 1/4, z = 1] [z = 1]

0,1[. 21 ( . ) . .] 0,2[. . 22 . .] 0,2[t1/2 1/2 c0
] 0,2[. n2,1 . . .] 0,2[n1,2 . . . .]

[x = 1/4, z = 1/2]

0,1[2 . ( . ) . .] 0,2[t1/2 1/2 c0
] 0,2[. . 22 . .] 0,2[n1,2 . . . .] 0,2[. n2,1 . . .]

[y = 1/4, z = 1/2]

0,1[�11] 0,2[n1,2 . . . .] 0,2[. n2,1 . . .] 0,2[t1/2 1/2 c0
] 0,2[. . 22 . .]

[x = 0, y = 0, z = 1/2]

0,1[. . (a) . .] 0,2[. n2,1 . . .] 0,2[n1,2 . . . .] 0,2[. . 22 . .] 0,2[t1/2 1/2 c0
]

[z = 1/2]



products 0,1[�1]+
�1,2[�2]+ = 0,2[�], coincidence operations

transforming P0 to P2 , are listed in Table 3, and their graphical

derivation is shown in Fig. 9. Also, in this case there are four

0,2[�]: 0,2[. . 22 . .], 0,2[t1
2

1
2 c0

] (congruent), 0,2[. n2,1 . . .] and

0,2[n1,2 . . . .] (enantiomorphous). These operations became

total as MDO-generating �-operations of the other MDO2

polytype. The 0,2[t1
2

1
2 c0

] operation generates the I-centred cell

with unit-cell vectors a, b, 2c0, Ramsdell’s symbol is 2O. The

ensemble of total coincidence operations together with the

0,1[�1]+ operation related to c (1,2[. . (a) . .]+) forms the space

group with symbol Ibaa (No. 73). However, following the

recommendation in International Tables for Crystallography

Volume A (2002), p. 60, the preferred space-group symbol

Ibca should be used instead. Fig. 7(b) shows a projection of the

polytype down c in the ball-and-stick model as well as

symbolic figures with symmetry elements indicated. Fig. 8(b)

displays the 2O polytype as a side view. The stacking symbol of

the 2O polytype reads: |R � L L � R|. This polytype has not

really been found to date.

It is also possible to determine a set of products

0,1[�2]+
�1,2[�2]+ = 0,2[�]. However, the resulting MDO-

generating coincidence operations led again to the 1O poly-

type, but in an orientation turned by �/2 around c, with the

permuted space-group symbol Pbab. In this case the stacking

symbol reads |R � R|.

The stacking of packets in the two MDO polytypes can be

also understood in the following way. In the MDO1, all

packets P2n exactly coincide in a projection down c and the

same holds for all packets P2n+1 . On the other hand, in the

MDO2, such a coincidence holds separately for all packets

P4n , P4n+1 , P4n+2 and P4n+3 (cf. Figs. 8a and 8b).

The procedures for the derivation of MDO polytypes

described above exhaust all possibilities. No other MDO

polytype thus exists in the family of kettnerite.
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Figure 7
Two- and four-packet polytypes of kettnerite, projection down c, as a ball-and-stick model (left) and using symbolic figures (right). Symbolic figures of
packets P2 and P3 (closer to the observer) are represented by the empty and full red figures, respectively, in order to distinguish them from P0 and P1 .
Symmetry elements of resulting space groups are indicated for one unit cell. Note the different origin required by the respective space groups of the
polytypes. (a) Polytype 1O (MDO1), space group Pbaa (No. 54), lattice vectors a, b, c0. (b) Polytype 2O (MDO2), space group Ibca (No. 73), lattice
vectors a, b, 2c0. Right figures of P2 superimpose the left figures of P0 and vice versa; similarly the right figures of P3 superimpose the left figures of P1 and
vice versa. In the ball-and-stick model, superimposed CO3 groups of P0 and P2 as well as of P1 and P3 packets form diagonal crosses. (c) Polytype 2Q
(non-MDO), space group P42bc (No. 106), lattice vectors a, b, 2c0. Right figures of P2 superimpose the left figures of P0 and left figures of P2 superimpose
the right figures of P0 . On the contrary, right figures of P3 superimpose right figures of P1 and left figures of P3 superimpose left figures of P1 . Therefore
the figures of P1 are hidden behind those of P3 . In the ball-and-stick model, superimposed CO3 groups of P0 and P2 form diagonal crosses, while
superimposed CO3 groups of P1 and P3 are parallel. (d) The same polytype 2Q, upside-down. In this case the right figures of P3 superimpose the left
figures of P1 and the left figures of P3 superimpose the right figures of P1 . The right figures of P2 superimpose the right figures of P0 and the left figures of
P2 superimpose the left figures of P0 . Therefore the figures of P0 are hidden behind those of P2 . In the ball-and-stick model, superimposed CO3 groups of
P1 and P3 form diagonal crosses, while superimposed CO3 groups of P0 and P2 are parallel.



3.5. A peculiar hypothetical non-MDO polytype

The stacking rules described above might result in peculiar

stacking sequences. As an example, we can use a non-MDO

polytype with doubled repeat unit (cell parameters a, b, 2c0),

shown in Figs. 7(c) (down c) and 8(c) (side view). Its stacking

symbol reads

jR � L L � Lj:

In this polytype, all packets P2n+1 exactly coincide in a

projection down c, while the coincidence holds separately for

P4n and P4n+2 . The P4n packets are mapped onto the P4n+2

packets by 44 screw rotations (recall that the screw component

is related to c0) around the axes located in the local tetrads of

odd packets. These screw rotations are also valid for odd

packets, but they do not change the orientation of P2n+3 with

respect to P2n+1 . In the doubled cell the screw axis symbol is 42

and the corresponding coincidence operation becomes total

for the polytype. The resulting symmetry is P42bc (No. 106),

the polytype is really tetragonal, and Ramsdell’s symbol is 2Q.

The symmetry elements are indicated in Fig. 7(c). It is worth

noting that the structure as a whole is polar.

The stacking symbol: |R � L R � R| represents the same

polytype turned upside-down. In this case, all packets P2n

exactly coincide in a projection down c, while the coincidence

holds separately for P4n+1 and P4n�1 [cf. Figs. 7(d) and 8(d)].

This polytype remains hypothetical to date.

3.6. Stacking faults, out-of-step domains and twins

The present considerations assumed regular stacking

sequences in periodic polytypes. However, the diffuseness of

polytype reflections in the X-ray pattern proved a strong

tendency in kettnerite to disordering. Therefore various

possibilities of disordering should be discussed as well.
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Figure 8
Two- and four-packet polytypes of kettnerite; slices parallel to the (1�110) plane of the larger cell (side view); ball-and-stick model. Four packets are
displayed, as indicated on the right margin. Vectors c of all polytypes are indicated by arrows. (a) Polytype 1O (MDO1), lattice vectors a, b, c0. (b)
Polytype 2O (MDO2), lattice vectors a, b, 2c0 . Note the opposite orientations of CO3 groups in P2 with respect to P0 , and in P3 with respect to P1 packets.
(c) Polytype 2Q, lattice vectors a, b, 2c0 . Note the opposite orientation of CO3 groups in P2 with respect to P0 , and the same orientation of them in P1 and
P3 packets. (d) Polytype 2Q, upside-down, a, b, 2c0 . Note the opposite orientation of CO3 groups in P3 with respect to P1 , and the same orientation of
them in P0 and P2 packets.

Figure 9
Graphical representation of the derivation of 0,2[�] MDO-generating
operations in the 2O polytype. The 0,1[. 21 ( . ) . .]+ PO (one of 0,1[�1]+ POs)
is successively multiplied by all 1,2[�2]+ POs. Similar pictures can be
constructed for all three remaining 0,1[�1]+ POs.



An ‘improper’ position of one packet in an otherwise

regular sequence causes an isolated stacking fault. It can be,

for example, expressed as follows (in the 1O polytype),

R � L R � L R � R R � L R � L R � L

"

stacking fault

If some portion of an otherwise regular sequence is shifted as a

whole by (a + b)/2, an out-of-step domain is produced. As a

result of the transformation the orientational characters in

both kinds of packets are interchanged with respect to the rest

of the sequence. An example of the sequence with an out-of-

step domain of the 1O polytype reads

R � L R � L R � L R � R L � R L � R L � R

"

out-of-step domain boundary

With respect to the given coordination system, the stacking

rule allows existence of two kinds of domains mutually shifted

by (a + b)/2.

For the 2O polytype, an example of a sequence with out-of-

step domain reads

R � L L � R R � L L � R L � R R � L L � R R � L

"

out-of-step domain boundary

and for the 2Q polytype,

R � L L � L R � L L � L L � R R � R L � R R � R

"

out-of-step domain boundary

Another kind of domain is produced if some portion of the

structure is rotated by �/2 around local tetrads. This operation

changes orientational characters in packets of one parity (say

even), and leaves unchanged those of the other parity (say

odd). This gives rise to a twin domain, and �/2 rotation,

corresponding to [. . (41) . .] � operation of, say, even packets,

serves as a twin operation. For the 1O polytype, the sequence

with the twin domain reads, for example,

R � L R � L R � L R � R R � R R � R R � R

"

twin boundary

The arrangement of atoms or symbolic figures in the second

twin individual corresponds to the images in Figs. 5(b) and

7(a) rotated by �/2 while the coordinate system remains

unchanged. However, within the second twin individual, out-

of-step domains shifted by (a + b)/2 are possible too. These

domains are alternatively obtained by the �/2 rotations,

around tetrads of odd packets. Therefore four kinds of

domains altogether can exist within the polytype 1O. An

example of a sequence containing all possible domains reads

R � L R � L R � R L � R L � R R � R R � R R � L L � L L � L

" " "

domain boundary twin boundary domain boundary

This twinning really exists and the structure of the 1O poly-

type was actually refined as twin (Hybler & Dušek, 2007). In

that paper, four kinds of packet pairs (double packets) were

derived. The domains mentioned above are obtained by

repeated stacking of these packet pairs.

In the polytype 2O, four similar kinds of domains can be

derived. The polytype 2Q, because of its polar character,

allows the existence of another upside-down domain. They

correspond to structures displayed in Figs. 7(c) and 8(c) and

Figs. 7(d) and 8(d) co-existing in one crystal. Combining with

domains already defined, eight kinds of domains can exist in

this polytype. The upside-down operation can of course be

applied to 1O, and 2O polytypes as well, but in this case it

provides sequences that are either identical to the initial ones,

or to those obtained by the (a + b)/2 shift. Sequences corre-

sponding to all domains allowed by the stacking rule for 1O,

2O and 2Q polytypes are summarized in Table 4. According to

this table, there are 16 kinds of domains altogether.

In the polytype 2O, the sequence corresponding to the

(a + b)/2 shift can be alternatively obtained by cyclic permu-

tation of packet pairs [cf. initial and (a + b)/2 shifted sequences

in Table 4]. In the 2Q polytype, the sequences permuted in the

same way correspond to those obtained by the �/2 rotations.

Therefore, in this polytype the �/2 rotation does not produce a

twin, but rather out-of-step domains.

A tentative derivation of sequences corresponding to all

possible kinds of domains of theoretically possible six-packet

polytypes was also performed. To all sequences of four

packets, and doubled sequences of packet pairs of the 1O

polytype (cf. Table 4), additional packet pairs of four possible

kinds were added. The 64 six-packet sequences generated in

this way are listed in Table 5. The sequences in the first line

belong to the 1O polytype, as they contain repetitions of three

identical pairs. The remaining 60 sequences were checked

for equivalency by application of all allowed operations:

(a + b)/2 translations, �/2 rotations and turning upside-

down. All possible cyclic permutations of packet pairs

were also considered. Thus, for example, the sequence

|R � R L � L R � R| has permuted equivalents

|L � L R � R R � R| and |R � R R � R L � L|. In this way

it was revealed that all sequences belonged to only four
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Table 4
Stacking sequences of possible domains of polytypes 1O, 2O and 2Q.

Polytype Initial sequence (a + b)/2 shifted �/2 rotated �/2 rotated and (a + b)/2 shifted

1O |R � L| |L � R| |R � R| |L � L|
2O |R � L L � R| |L � R R � L| |R � R L � L| |L � L R � R|
2Q |R � L L � L| |L � R R � R| |R � R L � R| |L � L R � L|
2Q upside-down |R � R R � L| |L � L L � R| |R � L R � R| |L � R L � L|



distinct polytypes. As they were not a matter of further studies,

they were only numbered and these numbers are indicated in

respective lines in Table 5.

4. Desymmetrization

The present considerations assumed an idealized model of OD

layers and packets in kettnerite. The refinement of the poly-

type 1O revealed certain displacements of O1 and F1 atoms

from ideal positions as well as slight (�4�) rotation of CO3

groups (Hybler & Dušek, 2007). These changes can be easily

explained as a result of repulsive forces of anions. Especially

prone to these changes are F1 and O3 atoms (belonging to the

CO3 groups), because of their relative proximity. However, the

nature of these changes is such that they do not affect the

space-group symmetry Pbaa of the polytype 1O. For other

possible polytypes no experimental results are available,

therefore the desymmetrization is not further discussed in this

study.

5. Conclusion

This study presents a description of a new family of OD

structures. The MDO and some non-MDO polytypes are

derived and possible kinds of domains discussed. However,

the real existence of periodic polytypes with more than two

packets per period seems improbable as it requires a long-

range order over a relatively long distance. Moreover, the

experimental studies revealed a strong tendency in kettnerite

to disordering. Despite these stipulations, the study is

presented as a certain kind of exercise in the application of the

OD theory.
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Table 5
Stacking sequences of possible domains of six-packet polytypes of kettnerite.

The sequences in the first line represent those of the 1O polytype three times repeated. Otherwise the stacking rule allows four polytypes (numbered) in 60
domains.

Initial (a + b)/2 shifted �/2 rotated �/2 rotated and (a + b)/2 shifted Polytype

|R � L R � L R � L| |L � R L � R L � R| |R � R R � R R � R| |L � L L � L L � L| 1O
|R � L R � L L � R| |L � R L � R R � L| |R � R R � R L � L| |L � L L � L R � R| 1
|R � L R � L L � L| |L � R L � R R � R| |R � R R � R L � R| |L � L L � L R � L| 2
|R � L R � L R � R| |L � R L � R L � L| |R � R R � R R � L| |L � L L � L L � R| 2
|R � L L � R R � L| |L � R R � L L � R| |R � R L � L R � R| |L � L R � R L � L| 1
|R � L L � R L � R| |L � R R � L R � L| |R � R L � L L � L| |L � L R � R R � R| 1
|R � L L � R L � L| |L � R R � L R � R| |R � R L � L L � R| |L � L R � R R � L| 3
|R � L L � R R � R| |L � R R � L L � L| |R � R L � L R � L| |L � L R � R L � R| 4
|R � L L � L R � L| |L � R R � R L � R| |R � R L � R R � R| |L � L R � L L � L| 2
|R � L L � L L � R| |L � R R � R R � L| |R � R L � R L � L| |L � L R � L R � R| 4
|R � L L � L L � L| |L � R R � R R � R| |R � R L � R L � R| |L � L R � L R � L| 2
|R � L L � L R � R| |L � R R � R L � L| |R � R L � R R � L| |L � L R � L L � R| 3
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